#### **Optimal Conditions for Energy Extraction from VAWTs Authors** Stephen Conte, Ashwin Vaidya, Kevin Vargas

# **INTRO**

Motivations of this work build upon previous research in controlled autorotation of small particles in a flow tank [1-2]. This research explores the introductory capabilities of a new VAWT design, the S-WIND, by first testing the performance of its small-scale prototype. Future research aims to explore the efficiency of denselypacked arrays of the S-WIND through CFD analysis as a potential scalable alternative.

## **METHODS**

Researchers created a 16' long wind tunnel to view the S-WIND prototype's performance in ideal conditions. Researchers also utilized an anemometer, tachometer, and multimeter capable of continuous data collection to measure model performance.

## DISCUSSION

The difference in power output between staggered vs. spiral configuration for 10, 8-blades is marginal. The spiral configuration contributes to aesthetics of the design when coupled with the blades' support frame. Future research plans are to create a digital model capable of CFD analysis to gather precise data, and to study densely-packed arrays of S-WIND VAWTs. This future research will build upon previous research suggesting counter-rotating arrangements have potential to improve power densities up to an order of magnitude greater than HAWTs [3].

#### COMPLEX FLUIDS LAB – MONTCLAIR STATE UNIVERSITY

I gratefully acknowledge the NEJDA/NJ Wind Institute for providing me with this opportunity. I also would like to thank Dr. Ashwin Vaidya for his continual guidance and support in my Mathematics career at Montclair State University.





### **ADDITIONAL FIGURES**



Minimized Upwind Angle of Attack Concept



Spiral and Staggered S-WIND Prototype Configurations

