

New Jersey Instit

of Technology

New Jersey Institute of Technology.

FINITE ELEMENT MODELING AND NONDESTRUCTIVE MAGNETIC FIELD EVALUATION OF WIND TURBINE DRIVE TRAINS

Akhyurna Swain

Email: as594@njit.edu Website: https://web.njit.edu/~wp24/

Fig. 3. Magnetic field evaluation of Wind Turbine Drive Train Three case studies were conducted by introducing faults on various components and analyzed by comparing values of magnetic field strength.

TABLE I: TABULATION OF AVERAGE VALUES OF **CROSS-SECTIONAL MAGNETIC FIELD STRENGTH FOR VARIOUS CASES**

Cases	Average values of the cross-sectional Magnetic Field Strength (A/m)
Healthy case	272.732
Case study I	235.553
Case study II	159.165
Case study III	152.055

DISCUSSION

Significant changes are observed on the magnetic field distribution of the generator for each of the 3 case studies. Since the components are coupled, any change in the characteristics of any one of these components alters the common magnetic field distribution.

> The comparison study indicates that the electrical and mechanical components of the drive train are electromagnetically coupled.

ACKNOWLEDGEMENTS: Wind Institute Fellowship and NJEDA research funding (NJEDA Award No. 00089196-NJOWTRI).